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Abstract

In this paper, some aspects in the analysis of transversal oscillations of conveyor belts will be discussed. In particular the

use of finite or infinite mode-representations to describe the oscillations will be discussed, and the applicability of the

underlying partial differential equations will be taken into account.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

For a long time all kinds of aspects of conveyor-belt oscillations have been studied. Recently, it has been
pointed out in Refs. [1–3] that it is not always mathematically correct to truncate the infinite mode-
representation for the oscillations to a single or a few modes of oscillations. Usually partial differential
equations are used to describe these oscillations. For non-resonant problems the truncation method can
usually be applied successfully. For a resonant problem, however, it has been explicitly shown in Refs. [1–3]
that the truncation method (and so, a finite mode representation for the solution of the problem) can lead in
certain cases to results which describe wrong internal mode-interactions, and which give rise to wrong
resonance frequencies. Since the (in)stability of a system is usually determined by the internal mode-
interactions and the resonance frequencies it follows for instance from Refs. [1–3] that one has to be careful in
applying the truncation method.

On the other hand, there exist a lot of engineering approaches (see the list of references in Ref. [2,3]) that
only use a single or a few modes to describe these oscillations. The aim of this paper is to contribute to filling
the gap between the above mentioned approaches, that is, the gap between an infinite mode-representation or
a finite one. Asymptotic techniques (as for instance described in Ref. [4]) will be used to illustrate how this gap
most likely can be filled, and a new approach will be proposed.

In the new approach the applicability of the string model, the stretched beam model, and the beam model
will be taken into account. That is, for the lower frequencies (and oscillation mode numbers) a perturbed
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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string model is appropriate, for the higher frequencies a perturbed beam model is applicable, and for the
intermediate frequencies a perturbed stretched beam model is the most appropriate model to describe the
dynamics of the conveyor belt correctly. Each submodel has its own physical and mathematical properties.
One of the mathematical properties is related to the applicability of the truncation method. So, instead of
using only one model (string, or beam, or beam–string) a combination model is proposed, where the model
equations depend on the frequencies and on the vibration mode numbers.

The paper is organized as follows. In Section 2 of this paper a problem for a conveyor belt with an internal
resonance will be formulated, and in Section 3 the interplay between different small parameters and the
interplay between different modes will be discussed. For the lower frequencies and for the higher frequencies it
will turn out that a string-like model and a beam-like model, respectively, are applicable. These models will be
discussed briefly in Section 4 and in Section 5 of this paper. The stretched beam model is already discussed in
Ref. [2]. Finally, in Section 6 of this paper some conclusions will be drawn.
2. The equation of motion

The simplest mechanical model for a conveyor belt is a 1D-model in the spatial variable x (see Figs. 1 and
2). In this framework the equation of motion may be written as follows:

utt þ 2Vuxt þ Vtux þ ðV
2 � c2Þuxx þ

EI

rA
uxxxx ¼ 0, (1)

where uðx; tÞ is the transversal displacement; V is the time-varying belt speed; c is the wave speed due to a
pretension in the belt; E is Young’s modulus; I is the moment of inertia with respect to the belt middle plane,
I ¼ L1h

3=12 (see Fig. 2); r is the mass density of the belt; A is the area of the belt cross-section, A ¼ L1h (see
Fig. 2); x is the space coordinate, and t is time.

The following simply supported boundary conditions are assumed:

u ¼ uxx ¼ 0 for x ¼ 0; pL, (2)
Fig. 1. A 1D model for conveyor belt.

Fig. 2. The conveyor belt configuration.
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where pL is the distance between the pulleys, and the initial conditions take the following form:

u ¼ jðxÞ; ut ¼ c1ðxÞ for t ¼ 0. (3)

It is supposed that the belt velocity V ðtÞ is given by

V ðtÞ ¼ �1ðV 0 þ a sinðOtÞÞ, (4)

where 0p�151; V 0; a and O are constants with jV 0jbjaj.
Eq. (1) in non-dimensional form becomes:

utt � c21uxx þ �
2
2uxxxx ¼ ��ux cos t� 2�ðV 1 þ sin tÞuxt � �

2ðV 1 þ sin tÞ2uxx, (5)

where t ¼ Ot; x ¼ x=L; c21 ¼ c2=ðL2O2Þ; V1 ¼ V0=a; � ¼ �1a=ðLOÞ; �22 ¼ EI=ðrAL4O2Þ. For real problems
j�j51; �2251.

In the new variable the boundary and the initial conditions take the following form:

u ¼ 0 for x ¼ 0; p, (6)

uxx ¼ 0 for x ¼ 0; p, (7)

u ¼ jðxÞ; ut ¼ cðxÞ for t ¼ 0, (8)

where cðxÞ ¼ c1=O. To make our ideas more clear it will be assumed for simplicity that c21�1, V 1 ¼ 2.
By taking c21 ¼ 1 and �2251 it is additionally assumed that an internal resonance occurs at the lowest

eigenfrequency of the system (see also Ref. [1]).

3. The interplay of small parameters

The main feature in Eq. (5) is the presence of two small parameters, � and �22. The analysis strongly depends
upon their relations. Generally speaking, one has to consider (at least) three different cases:

ðaÞ �225�; ðbÞ �22��; ðcÞ �
2
2b�.

The analysis will be restricted to case (a), because this case is closely related to relevant problems for the
conveyor belt. Further it will be assumed that �2��.

During the analysis one also has to take into account the so-called index of the variation of the function u.
The index of variation of a function uðx; �Þ as �! 0 is the number g such that [4,5]:

ux��
�gu.

The essence of the index of the variation of the function one can easily see from the following simple
example. When

u ¼ A sinðkxÞ; then ux ¼ Ak cosðkxÞ.

For k���g it follows that

u�A and ux�A��g.

We also introduce the index of variation d:

ut ¼ �
�du.

Comparing the second term and the third term in the left-hand side of Eq. (5) one obtains:
(a)
 0pg51, d ¼ g, then the third term in Eq. (5) can be neglected with respect to the second term. Then one
obtains in the first approximation the string model

utt � c21uxx ¼ ��f 1ðx; t; uÞ,

where

f 1ðx; t; uÞ ¼ �ux cos t� 2ð2þ sin tÞuxt.
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g ¼ d ¼ 1=2, then one obtains in the first approximation the string model with another right-hand part
(b)
utt � c21uxx ¼ �f 2ðx; t; uÞ,

where

f 2ðx; t; uÞ ¼ �2ð2þ sin tÞuxt � �
2
2�
�1uxxxx.
(c)
 g ¼ d ¼ 1, then all terms in the left-hand side of Eq. (5) have the same order (the stretched beam model)

utt � c21uxx þ �
2
1uxxxx ¼ ��f 3ðx; t; uÞ,

where

f 3ðx; t; uÞ ¼ �2ð2þ sin tÞuxt.
(d)
 g ¼ d41, then the second term in Eq. (5) can be neglected with respect to the third (the beam model)

utt þ �
2
2uxxxx ¼ f 4ðx; t; uÞ,

where

f 4ðx; t; uÞ ¼ c21uxx.
For cases (c) and (d) the boundary conditions have the form (6) and (7). For the string model one must use
only condition (6).

Now the applicability of the above mentioned simplified models can be determined by considering

utt � c21uxx þ �
2
2uxxxx ¼ 0 (9)

subject to the boundary conditions (6) and (7). To determine the eigenfrequencies of this problem the
following ansatz will be used

u ¼ eiot sinðkxÞ; i ¼
ffiffiffiffiffiffiffi
�1
p

.

It then follows from Eqs. (9), (6) and (7) that

o ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ �

2
2k2

q
. (10)

For the string model one will find that

o ¼ kc1 (11)

and for the beam model

o ¼ �2k2. (12)

Numerical results for c21 ¼ 0:99, �22 ¼ 0:01 show that with a 5% error in the frequency o (which is typical for
engineering problems) the string model is approximately valid for 0pkp7, the beam model for kX22, and the
stretched beam model for 8pkp21. Application of the beam model is of course also restricted by the 3D
theory of elasticity, that is, additionally it should be assumed that pL=kbh and L1bh. From now on it will be
assumed that for 1pkpk1 the string model can be used, that for k1 þ 1pkpk2 � 1 the stretched beam model
can be applied, and that for kXk2 the beam model can be used. In this paper it will be assumed that the
solutions of the separate models are not interacting. In the next two sections the behavior of the string model
and the beam model will be discussed, because these (partly) truncated models have not yet been treated in
the literature.
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4. The string model

Let us suppose c21 ¼ 1. In this section the equation

utt � uxx ¼ ��ux cos t� 2�ð2þ sin tÞuxt � �
2ð2þ sin tÞ2uxx (13)

subject to the boundary conditions (6) will be studied.
The following ansatz will be used:

uðx; tÞ ¼
Xk1
k¼1

ukðtÞ sinðkxÞ. (14)

This leads to a system of coupled ODEs (see also Ref. [1] for the computations) for k ¼ 1; 2; . . . ; k1:

d2uk

dt2
þ k2uk ¼ �

X0
n

2n

2j þ 1
un cos tþ 2ð2þ sin tÞ

dun

dt

� �
þ �2ð2þ sin tÞ2k2uk, (15)

where
P0

n ¼
P

k¼n�2jþ1

P
k¼2jþ1þn

P
k¼2jþ1�n

P
. Without loss of generality it will be assumed that k1 is even.

To analyze Eq. (15) a multiple time-scales perturbation method will be used. By introducing the slow time
t1 ¼ �t it follows that

d

dt
¼

q
qt
þ �

q
qt1

. (16)

The function ukðtÞ may be sought in the following form:

uk ¼ u
ð0Þ
k þ �u

ð1Þ
k þ �

2u
ð2Þ
k þ . . . , (17)

where u
ðiÞ
k ¼ u

ðiÞ
k ðt; t1Þ.

Substituting Eqs. (16), (17) into Eq. (15) one obtains as Oð1Þ and as Oð�Þ-problem

q2u
ð0Þ
k

qt2
þ k2u

ð0Þ
k ¼ 0, (18)

q2uð1Þk

qt2
þ k2u

ð1Þ
k ¼ �2

q2uð0Þk

qtqt1
þ
X0

n

2n

2j þ 1
uð0Þn cos tþ 2ð1þ sin tÞ

quð0Þn

qt

� �
, (19)

respectively.
The solution of Eq. (18) is given by

u
ð0Þ
k ¼ Akðt1Þ cosðktÞ þ Bkðt1Þ sinðktÞ. (20)

The functions Akðt1Þ, Bkðt1Þ are defined such that no secular terms occur in Eq. (19). This leads to the
following system of ODEs (see also Ref. [1]):

dAk

dt1
¼ ðk þ 1ÞBkþ1 þ ðk � 1ÞBk�1,

dBk

dt1
¼ �ðk þ 1ÞAkþ1 � ðk � 1ÞAk�1, (21)

with k ¼ 1; 2; . . . ; k1, and A0 ¼ B0 � 0, Ak1þ1
¼ Bk1þ1

� 0.
Assuming that the solutions of the system (21) can be written in the form

Akðt1Þ ¼ Cke
lt1 ; Bkðt1Þ ¼ Dke

lt1 , (22)

where l;Ck;Dk are constants, it follows from Eqs. (21) and (22) that l;Ck and Dk for k ¼ 1; 2; . . . ; k1 have to
satisfy the following system of linear algebraic equations:

lCk ¼ ðk þ 1ÞDkþ1 þ ðk � 1ÞDk�1,
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lDk ¼ �ðk þ 1ÞCkþ1 � ðk � 1ÞCk�1. (23)

First the case l ¼ 0 is considered, and system (23) then implies

D2k ¼ C2k ¼ 0,

D2kþ1 ¼ ð�1Þ
k D1

2k þ 1
,

C2kþ1 ¼ ð�1Þ
k C1

2k þ 1
, ð24Þ

with k ¼ 1; 2; . . . ; k1=2� 1.
For la0 system (23) can be reduced to the following form:

lDk ¼ �ðk þ 1ÞCkþ1 � ðk � 1ÞCk�1, (25)

�l2Ck ¼ ðk � 1Þðk � 2ÞCk�2 þ 2k2Ck þ ðk þ 1Þðk þ 2ÞCkþ2; k ¼ 1; 2; . . . ; k1. (26)

Eq. (26) can be studied separately for C2k and C2kþ1. The case for odd indices will be studied. For even
indices the results are similar.

Let us rewrite system (26) for odd indices as follows:

ðk � 1Þðk � 2Þ

2k2
Ck�2 þ 1þ

l2

2k2

� �
Ck þ

ðk þ 1Þðk þ 2Þ

2k2
Ckþ2 ¼ 0 (27)

for k ¼ 1; 3; 5; . . . ; k1 � 1, and where C�1 and Ck1þ1
are both zero.

The determinant of system (27) has the form

detðl2Þ ¼

1

9
1þ

l2

2 � 32
1
1

9
0 0 � � �

0
6

25
1þ

l2

2 � 52
21

25
0 � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � �
ðk1 � 4Þðk1 � 5Þ

2ðk1 � 3Þ2
1þ

l2

2ðk1 � 3Þ2
ðk1 � 2Þðk1 � 1Þ

2ðk1 � 3Þ2

� � � � � � � � � � � �
ðk1 � 2Þðk1 � 3Þ

2ðk1 � 1Þ2
1þ

l2

2ðk1 � 1Þ2

��������������������

��������������������

. (28)

The equation detðl2Þ ¼ 0 has as only real root l ¼ 0. All other roots l are purely imaginary as has been
shown in Ref. [1].

For the lower frequencies the string like approach is applicable, whereas for the higher frequencies
we should look at a stretched beam approach and for a beam approach. So, for the lower frequencies
this new approach indicates bounded solutions, whereas the old approach (see Ref. [1]) indicates unbounded
solutions.

5. The beam model

Now the beam equation

utt þ �
2
2uxxxx ¼ ��ux cosðtÞ � 2�ð2þ sinðtÞÞuxt � �

2ð2þ sinðtÞÞ2uxx (29)

subject to the boundary conditions (6) and (7) will be studied.
Now the solution will be sought in the form

X1
k¼k2

ukðt; t1Þ sinðkxÞ
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and a multiple scale approach (16), (17) will be used. Then the following Oð1Þ and Oð�Þ will be obtained:

q2uð0Þk

qt2
þ �22k

4u
ð0Þ
k ¼ 0, (30)

q2u
ð1Þ
k

qt2
þ �22k

4u
ð1Þ
k ¼ �2

q2u
ð0Þ
k

qtqt1
þ
X1
n¼k2

00
nk

n2 � k2
uð0Þn cosðtÞ þ 8ð2þ sin tÞ

quð0Þn

qt

� �
, (31)

respectively, with k ¼ k2; k2 þ 1; k2 þ 3 . . . : In
P00

n¼k2
the summation is carried out only for n� k odd.

Solutions of Eq. (30) have the form

u
ð0Þ
k ¼ Akðt1Þ sinðoktÞ þ Bkðt1Þ cosðoktÞ,

where ok ¼ �2k2. Eq. (31) now becomes

q2u
ð1Þ
k

qt2
þ o2

ku
ð1Þ
k ¼ � 2ok

dAk

dt1
cosðoktÞ �

dBk

dt1
sinðoktÞ

� �

þ
X
n¼k2

00 nk

n2 � k2
f4 cosðtÞ½An sinðontÞ þ Bn cosðontÞ�

þ 8onð2þ sinðtÞÞ½An cosðontÞ � Bn sinðontÞ�g. ð32Þ

Internal resonances can take place in two cases (as has been shown in Ref. [2]):

ok � op ¼ 1; k; pXk2.

Let us suppose ok2þ1
� ok2

¼ 1.
Then it follows from Ref. [2] that only the modes k2 þ 1 and k2 are interacting, and that

Ak2
ðt1Þ ¼ �aBk2þ1

ð0Þ sinðbt1Þ þ Ak2
ð0Þ cosðbt1Þ,

Bk2
ðt1Þ ¼ aAk2þ1

ð0Þ sinðbt1Þ þ Bk2
ð0Þ cosðbt1Þ,

Ak2þ1
ðt1Þ ¼ Ak2þ1

ð0Þ cosðbt1Þ � a�1Bk2
ð0Þ sinðbt1Þ,

Bk2þ1
ðt1Þ ¼ Bk2þ1

ð0Þ cosðbt1Þ þ a�1Ak2
ð0Þ sinðbt1Þ, ð33Þ

where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þ 1Þ2=k2

2

q
, b ¼ 2ð2k2

2 þ 2k2 þ 1Þ=ð3k2ðk2 þ 1ÞÞ. For kXk2 þ 2 it also follows from Ref. [2] that

Akðt1Þ ¼ Akð0Þ and Bkðt1Þ ¼ Bkð0Þ. For ok2þ1
� ok2

¼ 1 it follows from Ref. [2] that the solutions are

bounded (stable).
For the case ok2þ1

þ ok2
¼ 1 one can use the expression (33), where cos! cosh, sin! sinh and

b ¼ 2ð2k2 þ 1Þ=ð3k2ðk2 þ 1ÞÞ. In this case the solution of (29) can become unbounded (unstable).
For k1 þ 1pkpk2 � 1 one must use the stretched beam model—Eq. (5) with boundary conditions (6) and

(7). This case has been completely analyzed in Ref. [2], that is why it is not repeated here.

6. Conclusion

In Refs. [1–3] it has been shown, that the infinite system of ODEs (21) (if one supposes k1 ¼ 1) cannot be
reduced. On the other hand, in engineering papers (see the references in Refs. [1–3]) only a few terms in the
series (14) will usually be used. In what way can this contradiction be resolved?

It should be clear that the applicability of the different models is related to the frequencies (for the lower
frequencies a string-like approach can be used, and for the higher frequencies stretched beam or beam-like
approaches should be used). The different models still can (or should) be linked. The combination of models is
new; and in the paper it is indicated how this method (of different models for different frequencies domains)
can most likely be applied.

In mechanics usually a hierarchy of models can be used. In our case (depending on the frequency domain)
there are string, stretched beam, beam, and 3D elasticity models. In turn, the applicability of a 3D model will
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be restricted by the atomic structure of the material. So, each model can only be used for a finite range of the
parameters.

At the end of Section 3 it has explicitly been assumed that the string model for the modes 1pkpk1, the
stretched beam model for the modes k1 þ 1pkpk2 � 1, and the beam model for the modes kXk2 are not
interacting. However, by putting

uðx; tÞ ¼
X1
n¼1

unðtÞfnðxÞ, (34)

it will be clear that near the ‘‘boundaries’’ of validity of the different models the vibration modes certainly will
interact. Observe that for the boundary value problems that are considered in this paper fnðxÞ is equal to
sinðnxÞ, and so uxx�n2 and uxxxx�n4. Based upon the aforementioned considerations the following approach
will be proposed. For small values of n in Eq. (34) a string-like model should be used, that is, for 1pnpn1

(and n1 is of order 1)

utt � uxx ¼ �f 1ðx; t; uÞ.

For n�1=
ffiffi
�
p

, that is, for n1 þ 1pnpn2

utt � uxx ¼ �f 2ðx; t; uÞ,

for n�1=�, that is, for n2 þ 1pnpn3 the stretched beam equation

utt � uxx þ �
2uxxxx ¼ �f 3ðx; t; uÞ

and so on, ending for instance with beam-like models such as

utt þ �
2uxxxx ¼ f 4ðx; t; uÞ

for n�1=�
ffiffi
�
p

or larger.
One of the interesting difficulties for future research will be how to determine n1; n2; n3, and so on.

Moreover, it will be interesting to study the so-called system of (infinitely many) ODEs, and to answer the
questions: Can the system be truncated? When the system can or cannot be truncated: what can be said about
the stability of the solution of the system?
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